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Abstract-A theoretical basis is given for some ofthe recent experimental results [4] for the maximum load-carrying
capacity of sharply notched aluminum 7075-T6511 columns with fixed-ends. A failure criterion based on the
stress-intensity factor concept is developed for these concentrically loaded. notched columns. The criterion is used
to predict failure loads which are found to be in good agreement with experimental results for the case offixed-end,
notched aluminum columns investigated in this study. This work is another example of how the fracture mechanics
concept may be applied to determining the response of notched columns under axial compression loading.

INTRODUCTION

STRUCTURAL engineers are constantly faced with the problem ofdetermining the maximum
loads allowable for a particular structure. Design practices are revised often to embrace
modern research results. The recent program of Liebowitz et ai. [1-3] includes a systematic
investigation of the effect of a particular type of flaw, namely a sharp notch, on the load
carrying capacity of structural columns. The experimental and analytical work in [1-3]
pertain to notched aluminum columns with pinned-ends. In this paper, a failure criterion
is formulated for notched columns with fixed-ends, and the theoretical results are compared
with the experimentaJJy determined failure loads given in Ref. [4].

The experimental studies mentioned above [4J were compression tests carried out on
notched and unnotched aluminum columns with square cross-sections. The columns were
loaded nearly concentricalJy and the maximum carrying load reached was measured.
Various length columns with single notches on one side and double notches on opposite
sides of varying notch depths were studied. A detailed description of the experimental
apparatus and results was given in Ref. [4]. For later use, it is noted here that the test speci­
mens were made from 7075-T6511 aluminum bars. The pertinent material properties are:
Young's modulus of 107 psi, yield stress of 73,000 psi, ultimate stress of 83,000 psi, and a
stress--intensity factor (K factor) of 38,000 lb-in -to

FAILURE CRITERION

The objective of this section is to formulate a failure criterion for notched columns with
fixed-ends. The procedure followed is an extension of the criterion developed in Ref. [3]
which was based on the stress-intensity (K) factor concept. The K factor may be defined by
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(I)

where (Jmax is the maximum stress at the notch root and p is the notch radius. Using Neuber's
results for stress distributions in hyperbolic notches, a combined K factor accounting for
both bending and compressive stresses in a beam of rectangular cross-section was derived in
Ref. [3J and is

K = 2(~r[~((Jnom) bending + ((Jnom) compressionJ

where the nominal stresses are evaluated at the notch root. The K factor is valid for double.
symmetric hyperbolic notches with a throat width of 2b.

Since the nominal stresses are functions of the applied load P and K is a material
property, equation (1) is interpreted as a failure criterion giving the maximum carrying
load. Furthermore, the boundary conditions of the column are taken into account through
the selection of the nominal stresses. In Ref. [3] pinned-end columns were considered: in this
paper, fixed-end columns are investigated.

It is known that if a perfectly concentric load were applied to a perfectly straight
column, buckling, not bending, would occur. To take into account the observed bending, an
equivalent initial crookedness of the column

( )' nx
Yo x) = ( SIll L

is assumed. Using standard, classical techniques [5] the bending stress at the middle and at
the outer fiber of a fixed-end column of width 2b under an axial load Pis

where

N>b [ nel]
(Jb = 1(1- :x) l-2u si~-;:;
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(3)

This stress is taken as the nominal bending stress in equation 0). The nominal compressive
stress is taken to be - P(2bh) - I. Here h is the thickness of the bar.

Substituting the nominal bending stress equation (2) and the nominal compressive stress
into equation (1) allows rewriting the K factor as

K= A[I- 2(P/Pcr)! , ]-p(nb)-+h- 1

sin[n(P/Pcr)'2J

A = 2Pi5n-+h-1b-t[1-4(P/Pcr)r 1

This relation is regarded as a failure criterion for the notched columns with fixed-ends. K is
an experimentally determined material property so that equation (3) can be solved numeric­
ally for the failure load P. Of course equation (3) is valid only for P < Pcr .

Several comments are in order regarding equation (3). First, the moment of inertia in
the bending stress equation (2) was taken to be the reduced cross-sectional moment 2hb3/3
since the nominal stress at the notch root was the nominal stress desired. Second, it was
found experimentally that the notch did not affect the buckling (Pcr) load of the straightened
column. Hence Pcr was calculated using the full cross-section.
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COMPARISON WITH EXPERIMENT
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The failure criterion equation (3) was solved numerically for the failure load P for
columns of various lengths with notches of various depths. The calculated failure loads
were then compared with the experimental results reported in Ref. [4]. A summary of these
results is presented in Figs. 1~12. In Figs. 1-4 the maximum load is plotted against total
notch depth for columns 10,25, 16,25,22'25 and 28·25 inches long. Experimental points are
shown for both single and double notches for comparison. Although the single notch data
seem to agree well with the calculated values of the maximum load, remember that the
assumptions used in deriving the failure criterion restrict the validity of that criterion to the
symmetric, double notch case. It is simply noted that the same criterion appears to be
successful in the asymmetric, single notch case also. Further research needs to be done to
clarify this point.

In Figs. 5~12 the maximum load is plotted against column length for various notch
depths. Calculations were done using notch depths from 0·020 in. to 0·230 in. It is seen from
these figures that agreement between calculated and measured maximum loads is accept­
ably good. An initial eccentricity of 0·1 in. gives good agreement with experimental results.
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FIG. 11. Fixed-fixed column with the load applied at varying ec­
centricities from the centerline of the column vs length of column

(notch depth. (I = 0·0195 in.).
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FIG. 12. Fixed-fixed columns with the load applied at varying eccentricities from the centerline of the
column vs. length of column (notch depth, a' = 0·220 in.).

CONCLUSIONS

The failure criterion developed in this paper equation (3), based on the stress intensity
concept combined with Neuber's notch stresses, adequately predicts the failure loads of the
notched, aluminum columns with fixed ends considered in this study. The criterion was
successfully applied to t in. by t in. columns from 10·25 to 28·25 in. long with notches from
0·055 to 0·180 in. deep.
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A6CTjl3KT-)laeTcll TeopeTR'IeCKall OCHOBa HeKoTopblX nOCJlell,HI1X JKCnepl1MeHTallbHhlx pe'3YJlbTaTOB [41,
KacalOllUIXCll MaKCRMallbHoi! HecYlll,eit cnoco6HoCTI1 OCTpO lIaCe'leHHblX KOJlOllll, lnrOTOBlleHHblX H'l

aJllOlI-U1H}'Ill 7075-T6511, clarueMlleHHhlMlI KOHl.l,aMlI. PaccMaTpllBaeTcll Kpl1TeplIli pa1pyweHlIll, ,TI1X

KOHl.l,eHTplt'leCKH HarPY)KeHHbIX KOllOHH C Ha,lJ,pe10M, OCHOBaHHblli Ha KOHUenUI1H (jJaKTopa I1HTellCI1BHOCTIl

Hanpll)KeHlIH. :)TOT KpHTepRH lIcnollb3yeTcll )l,Jlll onpe)l,eJleHI111 HarpY'0K pa1pyweHI111, xopowo cornacy­

BYlOllI,HXCll c )KCnepHMeHTaJlbHbIMI1 pe1ynbTaTaMR )l,Jlll CJlY'Iali 3arueMneHHblX, amOMHHHeBblX KonOHH

C Ha,lJ,pe30M R C 1alll,eMJleHHblMR KOHl.l,aMlI, RCCJlell,yeMbIX B HaCTOlllltei1 pa6oTe. lIpenJlaraeMaSl pa60Ta

)l,aeT elll,e O,lJ,RH npl1Mep npl1MeHeHl1l1 KOHl.l,enl.l,RH MexaHHKH pa1pymeHHlI ll,Jlll onpeneJlHHlI peaKUHH KOJlOlIH

C Ha,lJ,pe30M, C)KaThIX oceBoi1 HarpY3Koi1.


